Ce matériau n'a été utilisé dans l'industrie nucléaire que pour le renforcement de tours de refroidissement, mais il a le potentiel pour servir dans d'autres applications – nous avons d'ailleurs un programme d'études avec EDF à ce sujet. Il s'agit en effet d'un béton assez peu connu car, issu d'une dizaine d'années de recherches à l'initiative de Bouygues, de Rhodia et de Lafarge, il n'a donné lieu à des brevets qu'à la fin des années quatre-vingt-dix.
Dans le cadre des problématiques liées au nucléaire, ses caractéristiques sont intéressantes : résistance en compression ; composition qui permet sinon de s'affranchir des ferraillages, du moins de les réduire là où, dans les centrales nucléaires, il n'est pas besoin de le faire passer à travers des cages de ferraillage souvent extrêmement serrées ; résistance inhabituelle aux explosions, ce qui a été utile pour le renforcement de plusieurs ambassades ; perméabilités à l'eau et au gaz 100 fois inférieures au béton classique ; très grande durabilité.
Pour autant, ce n'est pas un matériau qui a vocation à remplacer le béton standard, lequel est parfaitement adapté en de nombreux endroits de la centrale nucléaire. En revanche, il mériterait d'être plus étudié car peu de personnes, y compris dans l'industrie nucléaire, savent dimensionner avec ce béton voire le connaissent, alors qu'il pourrait apporter, là où le béton trouve ses limites, un autre type de réponse.