Découvrez vos députés de la 14ème législature !

Intervention de Christophe Béhar

Réunion du 24 mai 2011 à 16h00
Office parlementaire d’évaluation des choix scientifiques et technologiques

Christophe Béhar, directeur de l'énergie nucléaire du Commissariat à l'énergie atomique et aux énergies alternatives, CEA :

Les études du CEA en recherche et développement sont, dans une assez large mesure, menées soit en collaboration avec EDF, Areva ou l'IRSN, soit via des partenariats internationaux, comme le projet SERENA de l'OCDE.

J'évoquerai la nature de chacun des problèmes soulevés, les acquis dont nous disposons pour les résoudre et ce qui reste à faire. Le CEA consacre environ 24 millions d'euros par an à ces études.

On distingue les accidents de dimensionnement – accidents de perte de réfrigérant primaire, dont Fukushima offre un exemple, et accidents de réactivité – et les accidents hors dimensionnement : problèmes liés à la création et au comportement de l'hydrogène dans les enceintes de grande taille ; rupture des gaines de combustible – relâchement et transport des produits de fission – ; enfin, création et comportement du corium, combustible fondu qui interagit avec la cuve du réacteur, l'eau et le béton.

S'agissant des pertes de réfrigérant primaire, la température de la gaine augmente en même temps que diminue la pression à l'intérieur de la cuve du réacteur. La pression interne à la gaine varie, selon le temps que celle-ci a passé dans le coeur du réacteur, de 95 à 140 bars. Lorsque la gaine éclate, la température diminue, ce qui provoque une décharge des accumulateurs, d'où une lente remontée de la pression jusqu'à une injection de sécurité de moyenne pression, aux alentours de 40 bars. Le problème posé est celui de la capacité à refroidir le coeur après une rupture complète de la tuyauterie principale de la boucle primaire et la tenue mécanique des gaines des crayons de combustible. Nous savons modéliser le ballonnement et la rupture de gaine du combustible, et son comportement après renoyage du coeur, dans la mesure où les gaines de combustible subissent aussi des changements métallurgiques. Il nous reste à opérer une modélisation en trois dimensions de la gaine de combustible – chaque partie de celle-ci n'étant pas symétrique aux autres – qui prenne en compte les interactions mécaniques éventuelles entre les crayons de combustible.

Les accidents de réactivité peuvent se produire lors de l'éjection d'une barre de contrôle, éjection qui démultiplie, en quelques dizaines de millisecondes, le nombre de neutrons. La température du combustible augmente alors très fortement, et des produits de fission sont produits en grande quantité à l'intérieur de la gaine. Ces produits auront tendance à pousser les pastilles de combustible vers la gaine, produisant une interaction mécanique très forte. Nous travaillons à ce problème au sein de l'installation CABRI en cours de construction à Cadarache, afin de définir les critères de tenue du combustible lors d'un tel événement. Lorsque le programme international CABRI sera opérationnel, il nous faudra étudier le comportement du combustible après ballonnement et rupture, et pourquoi pas envisager de nouveaux matériaux pour les gaines et les combustibles.

J'évoquerai le comportement de l'hydrogène dans un grand volume. Dans le cadre des analyses que nous avons menées sur l'accident de Fukushima, nous nous sommes rendu compte qu'il était nécessaire d'améliorer les outils permettant de mesurer la quantité d'hydrogène créée, soit par oxydation des gaines de combustible, soit, sur le plus long terme, par interaction des rayonnements avec l'eau, autrement dit la radiolyse. Le problème est l'inflammabilité et le risque d'explosion. Selon le diagramme de Shapiro, lorsque la concentration d'hydrogène est comprise entre 4 et 75 % en volume dans l'air, il y a un risque d'explosion. Il s'agit dès lors de savoir comment l'hydrogène se détend dans l'enceinte, et comment il se mélange avec l'oxygène. Il convient donc de modéliser les processus de développement de l'explosion, de travailler à la gestion de l'atmosphère gazeuse de l'enceinte par la mesure et la modélisation – c'est toute la question des recombineurs d'hydrogène –, ainsi qu'à l'impact mécanique des explosions sur les structures. Ces points sont étudiés dans le cadre du projet international OCDE et du projet européen ERCOSAM, qui doit s'achever fin 2013 : il s'agit d'un bidon d'une centaine de mètres cube, installé à Saclay, dans lequel sont effectuées des mesures de distribution d'hydrogène.

S'agissant de la rupture des gaines de combustible, le problème posé, on l'a souvent évoqué lors de l'accident de Fukushima, est le relâchement et le transport des produits de fission en cas de rupture ou de fusion partielle ou totale des gaines combustibles du réacteur. Nous avons de bonnes connaissances pour le combustible UO2 actuel ; il nous semble en revanche nécessaire de compléter les études sur d'autres types de combustible, comme le MOX, et d'étudier les phénomènes de dépôt et de revolatilisation : c'est le cas, par exemple, lorsqu'un produit de fission se dépose dans un endroit froid à l'origine, mais qui chauffe pendant l'accident, ou lors des entrées d'air dans les circuits. Il faut aussi améliorer la simulation du transport des produits de fission et étudier l'impact des conditions de renoyage du coeur. Dans cette optique, le programme international VERDON – qui regroupe EDF, GDF-Suez, la Nuclear regulatory commission (NRC) et l'IRSN – est destiné à simuler le comportement d'une gaine de combustible.

Mon dernier point concerne le corium créé en cuve consécutivement à la fusion des crayons de combustible. La première question concerne le comportement du corium et les flux de chaleur qu'il peut transmettre à la cuve du réacteur. Par ailleurs, si le corium interagit avec de l'eau, des matelas de vapeur se forment, ce qui, pour des raisons encore mal définies, peut entraîner une explosion très forte. Concernant, enfin, l'interaction du corium avec le béton, elle varie très sensiblement selon les types de béton.

Nous comprenons désormais les phénomènes de dégradation du combustible et des structures, la progression du corium en cuve et hors cuve – malgré quelques points d'interrogation –, et la physique relative à l'érosion thermique du béton du radier et de l'explosion vapeur. Beaucoup reste à faire, en revanche, sur le renoyage et la « refroissabilité » des lits de débris et du corium, la rétention du corium en cuve par refroidissement externe de celle-ci, l'étude des systèmes de « mitigation » au regard du risque de percement du radier et la modélisation des conséquences mécaniques de l'explosion vapeur sur les structures.

Aucun commentaire n'a encore été formulé sur cette intervention.

Inscription
ou
Connexion