Découvrez vos députés de la 14ème législature !

Intervention de Dominique Minière

Réunion du 5 mai 2011 à 9h00
Office parlementaire d’évaluation des choix scientifiques et technologiques

Dominique Minière, directeur du parc nucléaire à EDF :

La gestion d'un accident ne peut être réellement évaluée ou appréciée que si on la place dans le champ plus large de la sûreté nucléaire, c'est-à-dire de l'ensemble des dispositions techniques et des mesures d'organisation relatives à la conception, à la construction, au fonctionnement, à l'arrêt, au démantèlement des installations nucléaires, prises en vue de prévenir les accidents ou d'en limiter leur effet. En pratique, il s'agit de protéger l'homme et son environnement contre la dispersion des produits radioactifs.

Je tiens à rappeler que la première responsabilité en matière nucléaire est celle de l'exploitant. Pour lui, assurer au quotidien la sûreté nucléaire de meilleur niveau, c'est garantir l'acceptabilité du nucléaire. Concrètement, nous devons éviter que ne survienne en France une contamination du territoire qui contraindrait la vie quotidienne des populations pour de longues décennies, comme c'est le cas à Tchernobyl, et comme ce sera sans doute le cas à Fukushima.

Je m'attacherai tout d'abord à vous montrer, à la lumière des exemples de Three Mile Island, Tchernobyl ou Fukushima, ce que nous faisons pour empêcher tout accident sévère, l'essentiel étant d'éviter toute fusion de coeur. À Three Mile Island, cette fusion était très partielle ; à Tchernobyl, elle était quasiment complète ; à Fukushima, la situation était intermédiaire.

Nous observons des principes de sûreté à la conception et à l'exploitation – surveillance des installations, procédures pour faire face à des incidents ou des accidents, etc. Je m'arrêterai aujourd'hui sur un principe de sûreté qui est pour nous fondamental : celui de l'amélioration continue.

Une sûreté normale doit progresser en permanence, tant à la conception qu'en exploitation. Pour cela, nous avons nous-mêmes, dès le début du parc et avant même que ce soit institutionnalisé par la loi relative à la transparence et à la sécurité en matière nucléaire (loi TSN) de 2006, mis en place des réexamens périodiques de sûreté. Il ne faut pas oublier en effet que des centrales telles que les nôtres sont construites pour plusieurs dizaines d'années et qu'en plusieurs d'années, le monde change. D'abord, certains évènements, incidents ou accidents se produisent. Il est alors de notre devoir de prendre en compte le retour d'expérience de ces évènements et de ces accidents. Ensuite, les connaissances évoluent : les ordinateurs actuels ne sont pas ceux des années quatre-vingt, époque où l'on a construit nos réacteurs. Il est normal d'utiliser les progrès des moyens et des connaissances pour améliorer la sûreté des centrales. Enfin, et c'est fondamental, les risques externes ne sont pas stables entre le moment où on a construit nos centrales et quelques années après, qu'il s'agisse de l'environnement industriel autour de nos centrales ou de l'environnement naturel qui se modifie – pensez aux des tempêtes de ces dernières, qu'on n'avait jamais connues. Il est donc de notre responsabilité de prendre en compte ces évolutions pour améliorer continuellement notre sûreté.

Concrètement, comment s'y prend-on ?

Nous faisons des réexamens de sûreté tous les dix ans, voire un peu plus souvent en cas d'évènements graves dans le monde. Ces réexamens nous ont conduit à faire un certain nombre de modifications depuis que le parc nucléaire existe. De ce point de vue, notre modèle « concepteur exploitant » renforce la défense en profondeur. Un exploitant qui peut compter sur plus de 3 000 ingénieurs, qui ont fait la conception et sont capables de renforcer au quotidien cette conception, se trouve dans une situation bien meilleure que d'autres exploitants qui sont parfois complètement dans les mains des vendeurs de centrales nucléaires.

Le risque de fusion de coeur se mesure. Depuis la construction des centrales nucléaires françaises, pour tous les évènements d'origine internes – c'est-à-dire propres à la centrale – nous avons divisé ce risque par 10, ce qui est considérable.

Nous avons pris en compte le retour d'expérience des accidents, en traitant les causes de défaillance. Par exemple, l'accident de Three Mile Island aux Etats-Unis, qui est pour nous une référence, a montré qu'une des soupapes du circuit primaire du réacteur était restée bloquée ouverte, ce qui avait conduit les opérateurs à un mauvais diagnostic. Depuis, nous avons changé le type de soupape de circuit primaire sur l'ensemble des centrales françaises.

Nous avons également traité les effets des défaillances, qui tournent autour de deux éléments : l'eau de refroidissement et l'électricité. Il faut en permanence garder de l'eau pour refroidir, et de l'électricité pour alimenter certains circuits. Toujours à la suite de l'accident de Three Mile Island, nous avons ajouté un générateur électrique autonome, qui se trouve alimenté par la vapeur de la centrale. En effet, même en cas d'accident, il reste de la vapeur dans la centrale. Celle-ci permet de faire tourner un turbo-générateur, qui produira suffisamment d'électricité pour alimenter les circuits électriques nécessaires pour maîtriser l'accident.

Cet accident nous a enfin amenés à donner aux opérateurs le moyen de traiter des défaillances multiples de réacteurs, quelle qu'en soit la cause.

D'une part, nous avons complètement modifié la physionomie des salles de commandes, pour les rendre bien plus ergonomiques que ce qui avait été prévu à l'origine. En effet, il est important que les opérateurs réagissent au plus vite. Pour cela, une salle de commandes ergonomique constitue un élément clé.

D'autre part, nous avons modifié notre approche des conduites accidentelles, ce que n'ont pas fait la plupart des autres pays. A l'origine, nous avions adopté une approche dites « par évènement », qui suppose que l'on connaît l'évènement de départ, et qu'on le gère. Or dans la pratique, cela ne se passe pas tout à fait ainsi. En salle des commandes, quand un évènement surgit, un certain nombre d'alarmes, d'indicateurs de pression et de température apparaissent, et il vaut mieux agir à partir de ces indicateurs qu'à partir de l'évènement, dans la mesure où l'on n'est pas forcément en mesure d'en connaître la cause dans l'instant. C'est ce que l'on appelle l'approche « par état ». Cette approche, développée par EDF, en liaison avec l'IRSN et l'ASN, constitue une vraie force française. Elle a été adoptée récemment par nos collègues chinois.

Nous avons également pris en compte le risque de fusion du coeur en améliorant nos moyens d'exploitation, sur deux points, toujours les mêmes : l'eau et l'électricité.

Pour pallier le manque d'eau, nous avons pris des mesures simples : des pompes mobiles de secours, des pompes thermiques fonctionnant au fioul peuvent être rapidement transportées sur un site pour pomper de l'eau dans un endroit, la déverser dans un autre et continuer d'assurer le refroidissement du réacteur ; des manchettes, c'est-à-dire des tuyauteries, permettent de faire les raccordements nécessaires. Pour pallier l'excès d'eau, des moyens mobiles contre les inondations ont été mis en place.

Pour pallier le manque d'électricité, nous disposons de groupes électrogènes de secours, mobiles, qui viennent en complément des groupes fixes, ainsi que d'éclisses, c'est-à-dire de rallonges, pour raccorder les moyens mobiles aux pompes et aux tableaux électriques qui en ont besoin. Nous disposons enfin de généphones et d'éclairages de secours. Les généphones sont des téléphones qui fonctionnent manuellement et permettent de communiquer en interne. Ils sont complétés, pour communiquer avec l'extérieur, par des téléphones satellitaires, également présents sur nos sites.

Ainsi, nous prenons en compte les retours d'expérience des incidents et des accidents dans le monde, tout comme le progrès des connaissances. Nous tirons profit des méthodes les plus modernes de modélisation informatique des séismes et des conséquences que ceux-ci peuvent avoir sur les installations. Par exemple, au moment de la troisième visite décennale du réacteur numéro 1 de Fessenheim, nous avons fait des modifications liées à une nouvelle modélisation des effets de séisme, notamment de torsion sous les bâtiments, pour renforcer la capacité de résistance de cette centrale aux séismes.

Enfin, nous procédons à un certain nombre d'améliorations continues pour nous prémunir de l'évolution des agressions externes de l'environnement naturel. Par exemple, après ce qui s'est passé à Blayais avec la tempête Martine, nous avons très fortement renforcé, sur Blayais et sur l'ensemble des réacteurs français, les moyens de prévention contre les inondations. De la même façon, après la canicule de 2003, nous nous sommes demandé si des températures encore plus élevées auraient pu affecter la sûreté nucléaire. Comme c'est le cas, nous avons défini et nous sommes en train de renforcer la résistance de nos centrales aux grandes chaleurs – d'autant que ces dernières risquent d'être de plus en plus fréquentes, si l'on en croit les experts en matière de changement climatique.

Mais nous ne nous arrêtons pas là. Non seulement nous améliorons la prévention pour éviter le risque de fusion de coeur, mais nous avons mis en place des mesures de conception pour limiter, dès les premières heures, l'impact d'un accident de fusion de coeur. Car même si cet accident est très improbable, nous avons fait le choix de supposer qu'il pourrait tout de même se produire.

Au bout de quelques heures, les interactions entre la vapeur et les gaines d'assemblage combustible conduisent à produire de l'hydrogène – on l'a observé à Fukushima, comme à Three Mile Island et à Tchernobyl. Nous avons donc rajouté, dans l'ensemble de nos centrales nucléaires, des recombineurs d'hydrogène passifs dans l'enceinte des réacteurs – une centaine de recombineurs passifs dans un bâtiment réacteur d'une tranche 1 300 mégawatts, pour vous donner un ordre de grandeur. Ces recombineurs passifs sont destinés à éviter les explosions d'hydrogène dans le bâtiment réacteur, car celles-ci pourraient endommager l'enceinte de confinement.

Dans les quelques dizaines d'heures qui suivent un accident de ce type, si l'eau et l'électricité ne reviennent pas, on court un risque de montée en pression de l'enceinte, puis de détérioration de cette enceinte. Pour l'éviter, nous avons mis au point un dispositif de conception, le « filtre U5 » ou le « filtre à sable ».

Ainsi, en cas de montée de la pression, on ouvre l'enceinte pour qu'elle ne soit pas endommagée, mais on l'ouvre à travers le « filtre U5 » ou « filtre à sable ». Ce dispositif permet de récupérer une large partie des iodes, mais surtout 99,9 % des césiums, dont vous avez entendu parler au moment des accidents de Tchernobyl et de Fukushima, parce qu'ils sont les principaux responsables de la contamination à long terme des territoires. C'est un point fondamental. Nous sommes en train de réfléchir au moyen de récupérer la quasi totalité des iodes. Cette réflexion est déjà bien avancée, mais nous comptons l'accélérer pour aboutir dans les années qui viennent.

Je terminerai par l'organisation de crise qui exige, en interaction avec les pouvoirs publics, de recourir à des moyens prédéfinis et réservés, périodiquement testés, pour anticiper l'évolution de la situation. Les équipes qui mènent l'action sont séparées des équipes d'expertise, chargées du diagnostic et du pronostic : il est nécessaire de prévoir l'évolution de la situation pour les dix heures à venir en vue d'éviter toute aggravation. Nous avons également des équipes d'astreinte immédiate – soixante-dix par site et cinquante au plan national –, spécifiquement formées et entraînées et dont la relève est assurée structurellement – 1 500 personnes mobilisables au total. Nous possédons évidemment des locaux et des moyens de télécommunication dédiés.

Nous intégrons également de manière permanente le retour d'expérience des exercices et des situations réelles. Nous procédons à plus de 300 exercices par an sur l'ensemble du parc, dont plus d'une dizaine au plan national.

Nous disposons de moyens de crise locaux et nationaux régulièrement testés comprenant, là encore, des équipes-action et des équipes-réflexion.

Il conviendra d'intégrer le retour sur expérience de Fukushima. Non seulement nous revisiterons la conception de nos installations, sous l'égide de l'Autorité de sûreté nucléaire, mais nous inscrirons également dans le temps la leçon de ces événements dès que nous en aurons pris connaissance dans les détails. De plus, nous renforcerons notre organisation de crise, tant sur site qu'au plan national, pour faire face à la perte éventuelle de l'alimentation électrique sur l'ensemble d'un site, laquelle provoque un accident majeur en entraînant la dégradation du combustible dans le réacteur. Nous créerons une force opérationnelle nationale d'intervention rapide avec, à l'échelle d'un site, des matériels complémentaires d'apport en eau et en électricité et des moyens humains adaptés, entraînés et mobilisables dans les 24 à 48 heures. Fukushima a démontré combien il était important de retrouver la production d'électricité sur un site dans les 24 heures.

Nous avons travaillé dans le cadre du CODIRPA à la stratégie d'exploitation des autres sites en cas d'accident sur un site donné : l'effet-pallier de notre parc nucléaire nous permettrait notamment de récupérer des équipes de soutien sur d'autres sites. Nous avons également travaillé aux suivis sanitaire et psychologique du personnel présent sur un site accidenté ou à la mise en place de robots ou de moyens héliportés pour établir une cartographie dont il n'est plus besoin de démontrer l'importance. Nous travaillons avec nos opérateurs, dont Matra, pour disposer demain de ces moyens héliportés.

Aucun commentaire n'a encore été formulé sur cette intervention.

Inscription
ou
Connexion