Découvrez vos députés de la 14ème législature !

Intervention de André-Claude Lacoste

Réunion du 5 mai 2011 à 9h00
Office parlementaire d’évaluation des choix scientifiques et technologiques

André-Claude Lacoste, président de l'Autorité de sûreté nucléaire :

Je commencerai par faire le point sur la situation à Fukushima, qui appelle trois observations préliminaires.

La première, fondamentale à mes yeux, est que le Japon a vécu et vit encore une crise globale, dont Fukushima n'est qu'un élément. Il faut garder en tête le fait que le tsunami et le tremblement de terre ont durement frappé le pays, qu'il y a au moins 25 000 morts et disparus et que des zones entières sont ravagées ; la situation humanitaire est donc difficile. À tout cela, qui est directement lié au tsunami et au tremblement de terre, est venue s'ajouter une crise nucléaire. Mais n'oublions pas ce qui n'est pas directement lié à la crise nucléaire.

Ma deuxième observation est que nous ne disposons, sur la crise nucléaire du Japon, que d'informations partielles. Ce n'est pas là une mise en cause de la conception japonaise de la transparence, mais le constat qu'au moins pendant la première partie de la crise, les responsables avaient d'autres soucis que de fournir des informations à l'étranger, et que beaucoup d'instruments de mesure et de contrôle ont disparu et ne sont plus disponibles sur le site, lequel se trouve par ailleurs difficile d'accès.

Ma troisième observation porte sur l'estimation du temps qu'il faudra pour avoir un retour d'expérience complet de la crise. Nous en avons malheureusement déjà une idée : environ dix ans. Ce fut le cas pour Three Mile Island en 1979 et pour Tchernobyl en 1986. Je rappelle que, pour Three Mile Island, on a dû attendre six ans avant de pouvoir évaluer un peu précisément le pourcentage du coeur qui avait fondu. N'en déduisons surtout pas qu'il n'y a rien à faire dans l'immédiat. Tout au contraire, nous aurons à lancer les premiers retours d'expérience dès que possible. Mais sachons que cela va prendre dix ans.

Je vous rappelle brièvement ce qui s'est passé : un tremblement de terre et un tsunami ont affecté la côte Pacifique du Japon. La quinzaine de réacteurs en fonctionnement se sont tous arrêtés automatiquement, à la suite du tremblement de terre – y compris ceux de Fukushima. Très vite, l'attention s'est concentrée sur le site de Fukushima, tout au moins sur Fukushima 1, où se trouvaient six réacteurs : quatre en fonctionnement, deux à l'arrêt. Sur ces réacteurs, on a observé une perte de la source froide – les prises d'eau en mer avaient été détruites – et une perte d'alimentation électrique – les lignes électriques d'alimentation avaient elles aussi été détruites ; par ailleurs, les diesels n'avaient pas démarré, probablement parce qu'ils avaient été submergés par le tsunami.

Des difficultés sont rapidement apparues sur le combustible, à la fois dans les coeurs des réacteurs et dans les piscines. Alternativement, l'attention s'est portée sur tel coeur de réacteur ou sur telle piscine. Mais globalement, c'est l'ensemble de ces coeurs et de ces piscines qui a posé problème : il y a eu échauffement, endommagement de la gaine du combustible, endommagement du combustible, peut-être ou sans doute endommagement des cuves, peut-être ou sans doute endommagement de l'enceinte des réacteurs. Cela s'est traduit par deux phénomènes : d'abord, montée de la pression dans l'enceinte du réacteur, ouverture de certains évents et diffusion de bouffées de radioactivité ; ensuite, explosions d'hydrogène, qui ont fait voler en éclat les superstructures de certains des réacteurs.

La priorité absolue, dans un cas de ce genre, est d'essayer de refroidir l'ensemble des systèmes. Les responsables japonais : Tepco l'exploitant, les autorités et le gouvernement ont décidé, au bout d'un certain temps, d'utiliser de l'eau de mer à cette fin. On l'a fait avec des moyens de fortune, depuis des grues ou des hélicoptères. Cela ne pouvait pas durer longtemps, ne serait-ce que parce que l'eau de mer est corrosive et risquait de colmater les canalisations qui fonctionnaient encore. Les responsables japonais ont bien réussi à mettre en place un système de refroidissement avec de l'eau douce, qui est captée dans un lac aux environs, mais cette eau douce est utilisée en circuit ouvert : elle est injectée, mais une grande partie ruisselle et devient un effluent de l'installation, parfois lourdement chargé en radioactivité.

Les Japonais effectuent donc un refroidissement en eau douce, avec des moyens de fortune, dans des conditions d'intervention très difficiles, globalement à cause des émissions radioactives, en particulier parce qu'une partie de l'eau qui s'échappe, très fortement contaminée, se retrouve dans les salles des machines. Une des priorités de l'exploitant est d'évacuer cette eau, évaluée aux alentours de 90 000 mètres cubes, d'essayer de la transférer, soit dans des barges, soit dans des bateaux citernes, soit dans des réservoirs amenés à cette fin.

L'objectif est d'arriver à un refroidissement en cycle fermé, dans lequel l'eau circule sans fuir, et de rétablir une source froide. Tepco indique qu'il lui faudra des mois pour y parvenir. La situation est infiniment plus sûre qu'elle ne l'était au plus chaud de la crise, mais elle n'est pas encore redevenue stable et normale.

Les conséquences radiologiques sont très intenses sur le site et très importantes autour des installations. Les autorités japonaises avaient décidé d'évacuer les populations vivant dans un rayon de 20 km, soit environ 80 000 personnes, pour les confiner dans une zone comprise entre 20 et 30 km de distance – un confinement de longue durée, qui n'est pas conforme à la vision que nous avons en France. Mais il est vite apparu que les conditions de vie de ces habitants n'étaient pas tenables, ne serait-ce que parce qu'ils ne trouvaient pas de quoi satisfaire aux besoins de la vie courante.

Au-delà, un panache a dépassé le rayon des 30 km. On observe des « taches de léopard », des zones où la radioactivité est nettement plus forte qu'ailleurs. Cela dépend du relief, du sens du vent au moment de la sortie des bouffées radioactives. Une telle situation est évidemment complexe à gérer. En France, nous ne disposons actuellement que de données partielles sur le phénomène. Une des données principales que nous utilisons est la carte qui a été établie d'après une reconnaissance faite sur cette zone par un hélicoptère affrété par le département de l'énergie américain. Il est donc difficile de faire des pronostics et de connaître la quantité d'iode ou de césium 137 dans cette zone. Mais nous sommes conscients que la gestion de la zone contaminée prendra des années ou des décennies.

En résumé, le retour d'expériences complet durera dix ans ; le retour à un refroidissement normal des installations sur le site est espéré dans plusieurs mois ; enfin la gestion des zones contaminées s'étalera sur des années ou des décennies. C'est une vision que nous partageons avec l'Institut de radioprotection et de sûreté nucléaire (IRSN).

Pendant la période de crise la plus aigue, l'IRSN et l'ASN se sont attachés à analyser la situation et à informer le public. D'emblée, nous avons été amenés à dire qu'en France, un accident de ce genre aurait été classé au niveau 6 de l'échelle INES – entre celui de Three Mile Island et celui de Tchernobyl. Si nous avons pris cette précaution, c'est parce que l'échelle INES est une échelle de communication, largement liée aux conditions sociales du pays, et qu'elle doit donc être gérée par ses autorités. De fait, la gestion du classement a été assurée différemment par nos collègues japonais.

Enfin, même si le retour d'expérience doit durer dix ans, il faut le démarrer dès que possible, à partir de ce dont on est sûr. Dans cet esprit, deux initiatives ont été prises aux plans français et européen. En premier lieu, le Premier ministre nous a demandé, fin mars, de mener une batterie d'audits sur les installations nucléaires françaises ; nous avons réfléchi au contenu de ces audits et nous tiendrons prochainement une conférence de presse sur ce sujet. Parallèlement, au niveau européen, il a été décidé de lancer des stress tests, c'est-à-dire des tests de résistance, qui feront l'objet d'une mise au point. Nous ferons en sorte que ces deux lignes de demandes soient aussi proches que possible.

Vous l'avez constaté, je me suis attaché à ne pas tomber dans l'évènementiel. Néanmoins, toute bonne nouvelle mérite d'être accueillie : nous avons appris ce matin que Tepco avait réussi à entrer dans le réacteur numéro 1. Nous allons vérifier, tout en gardant en tête certains ordres de grandeur.

J'en viens à votre deuxième question : où en est-on concernant le post-accidentel en France ?

Nous menons dans notre pays toute une gamme d'exercices réunissant de nombreux intervenants, en particulier douze exercices nationaux par an. Jusqu'à présent, on se bornait à gérer la phase la plus aigue, soit la phase accidentelle, et on s'arrêtait quand l'installation était supposée revenue à un état sûr. Or, c'était frustrant et ne correspondait pas à la réalité des choses : il fallait commencer à réfléchir à la gestion post-accidentelle, en complément de la gestion de la phase d'urgence. De fait, personne ne peut garantir qu'il n'y aura jamais d'accident nucléaire en France. A nous tous, exploitants, autorités de contrôle et Gouvernement, de faire en sorte de réduire cette probabilité. Mais à nous tous de faire ce qu'il faut pour réduire et gérer les conséquences d'un tel accident. C'est ce qui a conduit le Premier ministre, en avril 2005, à charger l'ASN de réfléchir à un dispositif répondant aux situations post-accidentelles : d'où la mise en place du CODIRPA, la tenue du premier colloque de 2007 et l'organisation d'un deuxième colloque.

La caractéristique du programme CODIRPA est qu'elle associe des partenaires étrangers, des partenaires nationaux, des associations, des acteurs territoriaux : plus de 200 participants, dont au moins 25 % sont issus des cadres administratifs.

Nous examinons les conséquences d'un certain nombre d'accidents nucléaires. Les travaux du CODIRPA portent sur des sujets multiples, complexes et interdépendants, dont voici quelques uns : la levée de la mise à l'abri ; les denrées alimentaires ; l'eau ; les déchets ; la mesure de la radioactivité ; le suivi sanitaire ; l'indemnisation ; l'information, etc.

Il nous a semblé fondamental d'associer nos collègues étrangers et de faire preuve de transparence : tous les comptes rendus et les rapports des groupes de travail figurent sur notre site.

Nous avons également décidé d'associer toutes les parties prenantes, malgré la difficulté de l'exercice. C'est ainsi que nous avons engagé ce que nous appelons la « coconstruction » d'un guide national sur la sortie de la phase d'urgence, lequel est en cours d'expérimentation sur trois sites : Tricastin, Fessenheim, Civaux et quatre communes : Montbéliard, Fessenheim, Civaux et Orsan. Ce guide, qui devrait être publié en 2011, donnera également des lignes directrices pour les phases suivantes : après la phase d'urgence, la phase de transition, la phase de long terme, donc une vision globale de l'ensemble du processus à suivre après un accident.

L'année 2011 servira également à définir les suites à donner à ce séminaire. C'était du moins notre programme, avant l'accident de Fukushima. Nous serons amenés à l'adapter en fonction de ce que ce dernier nous aura appris.

Aucun commentaire n'a encore été formulé sur cette intervention.

Inscription
ou
Connexion